NMR Spectra of Substituted 2-(2-Nitrovinyl)thiophenes

Hajime Satonaka* and Michio Watanabe†

Industrial Research Institute of Kanagawa Prefecture, 3173, Showa-machi, Kanazawa-ku, Yokohama 236

†Permachem Asia Ltd., 2-14-5, Hiranuma, Nishi-ku, Yokohama 220

(Received June 1, 1985)

Synopsis. ¹H and ¹³C NMR spectra are reported for substituted 2-(2-nitrovinyl) thiophenes. The proton chemical shifts and coupling constants were correlated closely with those of methyl *trans*-3-(5-substituted 2-thienyl) acrylates. We have found that the additivity rule for ¹³C chemical shifts of simple substituted thiophenes is applicable to the shifts of the ring carbons in substituted 2-(2-nitrovinyl) thiophenes.

The antibacterial property of 2-(2-nitrovinyl) thiophene has been well known.¹⁾ Recently, we also reported some new antibacterial and fungicidal (nitrovinyl) thiophenes.²⁾

We examined the substituent effect in ¹H and ¹³C NMR spectra of a series of substituted 2-(2-nitrovinyl) thiophenes.

¹H NMR spectra of substituted (2-nitrovinyl) thiophenes are very similar to those of methyl *trans-*3-

(substituted 2-thienyl)acrylate.³⁾ Thus, assignment was made easily by comparing the spectra of two series of the compounds. The results are given in Table 1. The chemical shifts of protons in 5-substituted 2-(2-nitrovinyl)thiophenes (X=H, OCH₃, CH₃, Cl, Br, I, CHO, COCH₃, COOCH₃, and NO₂) against those of the corresponding protons in methyl *trans*-3-(5-substituted 2-thienyl)acrylates give good linear correlations [δ H(3)³⁾ r 0.963, p 0.970, s 0.038; δ H(4) r 0.992, p 0.963, s 0.062: δ H(α)⁴⁾ r 0.726, p 0.726, s 0.121; and δ H(β) r 0.959, p 1.05, s, 0.048], where r designates correlation coefficient, p slope, and s standard deviation.

13C NMR chemical shifts (Table 2) were assigned as described below. $C(\beta)$ substituted by NO_2 was unambiguously identified by its broad line width and lower intensity. The quaternary ring carbons were identified by lower intensity. C(2) and another carbon carrying the substituent were assigned on the basis of the substituent effect on substituted thiophenes.^{5,6)} The protonated carbons were assigned in comparison with the coupling constants between coarbons and protons. $C(\alpha)$ was easily identified by the smallest one bond coupling in the protonated carbons. C(3) and C(4) in 5-substituted 2-(2-nitrovinyl) thiophenes were assigned on the basis of the long-range couplings with $H(\alpha)$, because C(3) couples considerably with $H(\alpha)$, but C(4) does not.

Good linear correlations were obtained between the 13 C chemical shifts of the ring in substituted 2-(2-nitrovinyl) thiophenes and the corresponding chemical shifts in substituted thiophenes⁶⁾ [δ C(2) r 0.988, p 0.909, s 0.793; δ C(3) r 0.944, p 0.900, s 1.77; δ C(4) r 0.997, p 1.01, s 1.15; and δ C(5) r 0.998, p 0.945, s 1.30]. These results suggest that the additivity rule for 13 C chemical shifts of simple substituted thiophenes is

Table 1. ¹H NMR chemical shifts and coupling constants of substituted 2-(2-nitrovinyl) thiophenes

Com-	Chemical shifts (δ)						Coupling constants/Hz								
pounds	H(3)	H(4)	H(5)	H(\alpha)	Η(β)	Others	J ₃₄	J_{35}	J_{45}	$J_{\alpha\beta}$	$J_{3\alpha}$	$J_{5\alpha}$	Jзß	$J_{5\beta}$	Others
1	7.76	7.25	7.85	8.26	7.77		3.7	1.2	5.1	13.5	0.5	0.6	0.4	0.4	
2	-	7.09	7.72	8.26	7.62	2.46(CH ₃)	-	_	4.9	13.5	_	0.5	-	0.4	$0.4(J_{\text{CH}_{3-4}}) \ 0.4(J_{\text{CH}_{3-5}})$
3	_	7.30	7.93	8.15	7.88		_	_	5.4	13.5	_	0.6	_	0.4	
4	7.41	_	6.90	8.11	7.75	3.85(OCH ₃)	_	1.8		13.4	0.5	0.5	0.4	0.4	
5	7.72	_	7.76	8.20	7.87		_	1.5	_	13.4	0.5	0.6	0.4	0.4	
6	7.75	_	7.87	8.22	7.86			1.5	_	13.5	0.5	0.6	0.5	0.4	
7	7.80	_	7.99	8.24	7.84		_	1.3	_	13.5	0.5	0.6	0.5	0.4	
8	7.50	6.47		8.15	7.49	4.04(OCH ₃)	4.2	_	_	13.2	0.5	_	0.4	_	
9	7.56	6.95	-	8.18	7.62	2.56(CH ₃)	3.7	-	-	13.2	0.5	_	0.4	_	$0.5(J_{\text{CH}_{3-3}}) \ 0.9(J_{\text{CH}_{3-4}})$
10	7.64	7.20	_	8.19	7.75		4.0	_		13.4	0.5	_	0.4	_	-
11	7.59	7.32		8.21	7.77		4.0			13.4	0.5		0.4	_	
12	7.45	7.48	_	8.23	7.75		3.9	_	. —	13.5	0.5	_	0.4	_	
13	7.89	8.04	_	8.31	7.99	10.04(CHO)	4.0		_ '	13.5	0.6	-	0.4		
14	7.81	7.91	_	8.26	7.93	2.60(COCH ₃)	4.0	_	_	13.5	0.6	_	0.4	_	
15	7.79	7.81	_	8.27	7.93	5.99(COOH)	4.0	_	_	13.6	0.6	_	0.4	_	
16	7.79	7.82	_	8.27	7.94	3.91(COOCH ₃)	4.0	_	_	13.6	0.6	_	0.4		
17	7.82	8.10	_	8.27	8.09		4.4	_	_	13.5	0.6		0.4	_	
18	7.84	7.84	_	8.28	7.88				_	13.5	0.6	_	0.4	_	

TABLE 2. 13C NMR CHEMICAL SHIFTS OF SUBSTITUTED 2-(2-NITROVINYL) THIOPHENES

Com-	Chemical shifts (δ)											
pounds	C(2)	C(3)	C(4)	C(5)	C(a)	C(B)	Others					
1	134.7	135.6	129.7	132.9	132.7	136.4						
2	128.9	147.1	132.7	131.4	131.2	135.5	14.4(CH ₃)					
3	129.7	120.3	132.9	133.0	130.2	137.8	* *					
4	133.0	125.5	160.3	105.3	132.7	136.6	58.0(OCH ₃)					
5	135.4	133.8	127.3	127.2	131.5	137.8	•					
6	136.1	136.3	111.9	129.9	131.3	137.8						
7	136.8	141.5	79.4	135.7	131.0	137.7						
8	121.1	137.8	107.3	173.3	134.4	133.0	61.3(OCH ₃)					
9	132.8	137.0	128.6	148.8	133.1	135.3	15.7(CH ₃)					
19	133.9	135.7	129.4	136.4	132.0	136.7	, ,					
11	136.7	136.4	133.1	119.4	131.7	136.9						
12	140.9	137.1	140.0	82.8	131.2	137.1						
13	142.2	135.4	137.8	148.1	131.8	139.6	181.4(CHO)					
14	141.2	135.5	134.2	149.1	131.9	139.0	26.8(COCH ₃)	191.0(COCH ₃)				
15	140.3	135.0	134.9	139.6	131.9	138.7	162.4(COOH)	, -,				
16	140.5	134.9	134.9	138.6	131.8	138.9	52.9(COOCH ₃)	162.2(COOCH ₃)				
17	140.9	133.5	130.4	155.1	131.1	140.4	-,	, -,				
18	139.7	136.2	136.2	139.7	131.6	138.6						

Table 3. Melting points and analytical data of New 2-(2-nitrovinyl) thiophenes

	Mp/θ _m /°C	Formula		Fou	nd (%)		Calcd (%)			
Compounds			С	Н	N	s	С	Н	N	S
4	118	C7H7NO3S	45.30	3.82	7.70	17.40	45.40	3.81	7.56	17.31
5	118	C ₆ H ₄ ClNO ₂ S	38.18	2.09	7.26	16.98	38.01	2.13	7.39	16.91
7	106	C ₆ H ₄ INO ₂ S	25.50	1.49	5.07	11.52	25.64	1.43	4.98	11.41
8	129	C7H7NO3S	45.33	3.85	7.43	17.43	45.40	3.81	7.56	17.31
12	138	C ₆ H ₄ INO ₂ S	25.73	1.52	4.85	11.59	25.64	1.43	4.98	11.41
14	154	C ₈ H ₇ NO ₃ S	48.79	3.51	7.02	16.32	48.72	3.58	7.10	16.26
15	199(dec)	C7H5NO4S	42.05	2.63	7.00	16.17	42.21	2.53	7.03	16.10
16	173	C ₈ H ₇ NO ₄ S	45.28	3.20	6.51	15.18	45.07	3.31	6.57	15.04
18	197(dec)	C ₈ H ₆ N ₂ O ₄ S	42.57	2.76	12.49	14.02	42.48	2.67	12.38	14.17

applicable to the shifts of the ring carbons in substituted 2-(2-nitrovinyl)thiophenes.

Chemical shifts of the ring carbons are not always correlated closely with those of hydrogen atoms attached to them. In all the compounds stuidied, $\delta H(\alpha)$ appeared at considerably lower field than $\delta H(\beta)$. In contrast, $\delta C(\alpha)$ appeared at higher field than $\delta C(\beta)$, except for 8. The substituent effect of methoxy group may be transmitted more strongly by the contribution of resonance structures to $\delta C(\beta)$ in **8**, as to $\delta H(\beta)$ in methyl trans-3-(5-methoxy 2-thienyl)acrylate.3 In 4substituted compounds, $\delta H(3)$ appeared at lower field than $\delta H(5)$, but $\delta C(3)$ at higher field than $\delta C(5)$. These facts can be a reason for the poor correlations between δ H and δ C. It is exceptional that plot of δ H(β) vs. δ C(β) gave a good correlation (r 0.985, p 11.9, s 0.315). Besides, $\delta C(\beta)$ of 5-substituted compounds (X=H, OCH₃, CH₃, Cl, Br, I, CHO, COCH₃, COOCH₃, and NO₂) against Hammett's σ_p value^{7,8)} gave a good correlation (r 0.900, p 6.43, s 8.90). The effect of the substituent on the 5position may be transmitted more regularly to $\delta H(\beta)$ and $\delta C(\beta)$ than others as observed with methyl trans-3-(5-substituted 2-thienyl)acrylates.³⁾

Experimental

¹H and ¹³C NMR spectra were recorded on a JEOL FX-90Q spectrometer. ¹H(±0.01 ppm) and ¹³C(±0.1 ppm) chemical shifts were measured from internal TMS reference in (CD₃)₂CO solution at probe temperature. ¹H spectra were obtained, using 45° pulse flip angle and 900 or 1100 Hz spectra width and proton decoupled ¹³C spectra, using

30° pulse flip angle and 4500 or 5000 Hz spectra width. Proton coupled ¹³C spectra were obtained by the normal gate decoupling technique in (CD₃)₂SO solution.

Thiophenes (1, 2, 3, 6, 9, 10, 11, 13, and 17) were prepared according to the reported methods.^{1,9-10)} Melting points and analytical data of new compounds are given in Table 3.

The authors wish to thank Professor Minoru Hirota of Yokohama National University for his kind suggestions and encouragement.

References

- 1) A. Vecchi and G. Melone, J. Org. Chem., 22, 1636 (1957).
- 2) H. Satonaka, Jpn. Kokai Tokkyo Koho, 59-84882 (1984); 60-81179 (1985).
 - 3) H. Satonaka, Bull. Chem. Soc. Jpn., 57, 473 (1984).
- 4) The notations $H(\alpha)$, $H(\beta)$, $C(\alpha)$, and $C(\beta)$ are hereafter used for H(1), H(2), C(1), and C(2) of an olefinic side chain, respectively.
- 5) K. Takahashi, T. Sone, and K. Fujieda, J. Phys., Chem., 74, 2765 (1970).
- 6) S. Gronowitz, I. Johnson, and A. B. Hornfeldt, *Chem. Scr.*, 7, 76 (1975).
 - 7) H. H. Jaffe, Chem. Revs., 53, 191 (1953).
- 8) J. Hine, "Physical Organic Chemistry," 2nd ed. McGraw Hill, New York (1962), p. 87.
- 9) W. J. King and F. F. Nord, J. Org. Chem., 14, 405 (1949).
- 10) S. Gronowitz and E. Sandberg, Ark. Kemi, 32, 217 (1970).
- 11) V. I. Rogovik and Ya. L. Gol'dfarb, Izv. Akad. Nauk SSSR, Ser. Khim., 1963, 2178.